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Abstract. We present an algebraic Bethe ansatz for the anisotropic supersyminetadel for
correlated electrons on the unrestrictéddimensional electronic Hilbert spa@-zlc4 (where

L is the lattice length). The supersymmetry algebra of the local Hamiltonian is the quantum
superalgebrd/, [g/(2|1)] and the model contains two symmetry-preserving free real parameters;
the guantization parametgrand the Hubbard interaction parametér The parametet/ arises

from the one-parameter family of inequivalent typical four-dimensional irrep8,¢g!(2|1)].
Eigenstates of the model are determined by the algebraic Bethe ansatz on a one-dimensional
periodic lattice.

1. Introduction

The supersymmeti¢/ model [4] is an example of a generalized Hubbard model which is
integrable in one-dimension. Integrability of the model was shown through the quantum
inverse scattering method (QISM) using & matrix associated with the one parameter
family of typical four-dimensional representations of the Lie superalggh{2/1). As a
consequence the modelds(2|1) invariant and continuously depends on one free parameter,
compatible with the integrability, arising from the underlying representation. Bethe ansatz
solutions of this model have been studied in [11, 9, 12].

In [13] an anisotropic generalization of the supersymmétimodel was proposed and
solved by means of the co-ordinate Bethe ansatz. In this model an additional anisotropy
parameter for correlated hopping terms was introduced which then produces a model with
two free parameters. It was subsequently shown [1, 10] that the anisotropic model can
be derived in the framework of the QISM, thus demonstrating that the model is in fact
integrable that is, there exists an infinite humber of conservation laws for the system.
In this case the model was derived fromUg[g/(2|1)] invariant R-matrix, relating the
anisotropy parameter with the deformation parametef the sypersymmetry algebra.

Not only does the QISM provide a means to derive integrable models, it also provides
a framework for aralgebraic Bethe ansatz to be applied for the solution of such models.
Our aim in this paper is to pursue such a formulation for the anisotropic supersymmetric
U model. This approach has been discussed in [2] for a system derived from an abstract
U,losp(2|12)] = U,[gl(2|1)] invariant R-matrix. However, nearly all technical details were
not presented. Here we wish to provide a rigorous derivation of the Bethe ansatz equations
(BAE), confirming those given in [13, 2].

1 E-mail address: keh@maths.uq.o0z.au
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We now introduce some notation as in [4]. Electrons on a lattice are described by
canonical Fermi operators, and cia satisfying the anti-commutation relations given by
{cio, ¢jr} = 8ij8,7, Wherei, j = 1,2, .., L ando, t =%, | . The operatok; , annihilates
an electron of spi at sitei, which implies that the Fock vacuuif) satisfies; |0) = O.

At a given lattice site there are four possible electronic states:

00 M= 100 Thi=c 100 i =c 410,

By ni, = ciaci,a we denote the number operator for electrons with gpion sitei, and
we write n; = n; 4 + n;,. The global Hamiltonian for this model on a one-dimensional
periodic lattice as given in [13] is

t 1 1
H=-— Z(C,-(,Ciﬂa + h.c.)exp —é@ — OV —g — E(C +0YINitl—o

+ Z [Un,—Tnu + I(CLTTCLCHNQHT + h.c.)] Q)
wherei labels the sites and
U
t = 5= €[2e~*coshe¢ — coshy)]% € =+1

The Hamiltonian may be obtained from tiRematrix for the one-parameter family of
four-dimensional representations Gf[g/(2|1)], which is afforded by the modul& with
highest weight0, O|«a). Fora > 0 ora < —1, the moduleW is unitary and thus the tensor
productW ® W is completely reducible [3]. We writdd @ W = W, & W, & W3, where
Wy, W, andWs areU,[ gl (2]1)]-modules with highest weight®, 0|2«), (0, —1|2«+ 1) and
(-1, 1|2« + 2), respectively. LetP,, k = 1, 2, 3 be the projection operator frofy @ W
onto W,. The trigonometric R-matrix, which satisfies the quantum Yang—Baxter equation,
was given in [4] in the form

X 2x x+20+2
5 g9 —q l1—g
R(X) = 1— qx+2a Pl + P2 + qx _ q2a+2 P3'
The local Hamiltonian is given by [5]
(qoz+1_q—a—1) d .
Hjy1=———7"———Ri;
Ji+1 |n q dx s +1(-x)|x:0
with
e =q e = [o + 1, U =2[]*
[a]q
where
[x]qzq._q x eC.

q—q7t
We assume throughout thate R andg > 0. We stress that the Hamiltonian is Hermitian
only for U > —2; that is, when the underlying,[g/(2|1)] representation is unitary.

The global HamiltoniarH is solvable by means of the QISM which we will demonstrate
below. The quasi-triangular structure of the affine superalgéhia/(2|1)V] allows us
to replace the auxilliary spac® with the vector representation spateto simplify the
calculation of thenested algebraic Bethe ansdftABA).

The paper is set out as follows. The graded QISM will be discussed in section 2.
The use of the QISM enables us to obtain expressions for an infinite number of higher
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conservation laws at the quantum level. Section 4 will be the construction of the algebraic
Bethe ansatz for the model. We formulate a set of simultaneous eigenstates of the transfer
matrix using a NABA. The expression obtained for the BAE will be compared with those
given in [2].

2. Graded quantum inverse scattering method

We will construct eigenstates of the Hamiltonian of the one-dimensional supersymmetric
model above, using the QISM. The supersymmetry of the model requires a modification of
the QISM. We use th&-matrix satisfying the graded Yang—Baxter equation and introduce
an L operator constructed directly from thematrix of the twisted representation.

The graded Yang—Baxter equation can be written as the operator equation:

Ras ooy X/ V) LX) prynai L (3) pyypoe (— 1) P AIFDAD
=L (y)azﬂzab L (x)alﬁlbc (= 1)[ﬂ2] ([enl+{AD RﬁlylvﬁZVZ (x/y) (2)

acting on the spacé8 ® V @ W whereV is the vector module an# is a four-dimensional
module of inequivalent irreps. Greek indices are used to label the matrix spaces, that is the
first two spaces and Roman indices label the quantum space, which is the third space. The
guantum space represents the Hilbert space over a site on the one-dimensional lattice. The
R-matrix acts in the matrix space and it is between the two matrix spaces that the graded
tensor product acts.

The R-matrix acts onV ® V and has the form [14, 7]

A O 0O 0 0O O 0 0 0
0O E 0 C¢c 0 O 0 0 0
0o 0o £E 0 O 0O —-C O 0
0O xC 0 E O O 0 0 0
Rx)=| 0 o 0 04 0 0 0 O
0O O 0O 0 0 E 0O —-Cc O
0O 0 xC 0 0 0 E 0 0
0 0 O O O0uxC O E O
0O O 0O 0 0 O 0 0 -1
1—xq?

where A(x) = 2%, E(x) = ()1;7’;);’ and C(x) = i:f; which satisfies the Yang—Baxter

equation. Thel. operator is constructed in the next section.

3. The L operator

The L operator will be constructed from¥a® W representation where as befdredenotes

the vector module an@ corresponds to the one parameter family of the inequivalent typical
four-dimensional irreps. The weights for moduteare (1, 0|0), (0, 1|0), (0, 0]1) with the
corresponding weight basi4), |2), and|3) respectively. On this module th&,[g/(2]1)]
generators act aE]’ﬁ = e}. We choose the grading for moduléto be

M=[2]=0 [38]=1

The weights for modulé¥ are (0, O|«), (0, —1|a + 1) ,(—1,Ola + 1) and (-1, —1ja + 2)
respectively with basis vectots), |b), |c), |d). TheU,[gl(2|1)] generators act as

1
E]_ = — € — €dd

2
E5 = —ep —eq
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E3 = aeqq + (@ + D)(eny + €ec) + (@ + 2)eaa
E} = e
E% =ep
E% = \/@eab + VI + 1],ecq
Eg‘ = \/@eba + o + 1 eq..
We choose the grading for the modué to be
[a] =[d] =0 [6] =[] =1
We note for valuesr > 0 we have
(E)' = E]
and the representation is referred to as unitary of type l.oFer—1 we have
(EII)T — (_1)[i]+[j]El-_f

and the representation is unitary of type Il [3].

The tensor product decompositionWs® W = V; & V,, whereV; has highest weight
(1, 0|a) and V, has highest weightO, Ol + 1). Applying the Baxterization procedure
described in [8] gives th&-matrix for thisV ® W representation as
2—a

1—xqg~ o .
*q Py + Ps.

R(x) =
()C) x — q—2—rx

In the above theP; are U,[gl(2|1)]-invariant operators’; : V @ W — W ® V. We define

the L operator as

. 1— xq7270¢
where P, and P, are twisted intertwiners defined b§; = PP, and P, = —PP,; we

construct them in the following way.
The co-productA : U, [gl(2|D)] — U,[gl(2|1)] is defined by

AEY=1®E +E®1 i=123,
A(Ey) = E3 @ ¢ 110 4 g2 @ B}
AED) = E2 @ q2Fi752) 4 725D @ 2
A(E3) = E3®q2 "5+ g2 @ 3
A(ES) = E3 @ g2 B3HED 4 g=3(E3+E) @ f3,
4)
Symmetry adapted orthonormal bases may be expressed in terrzyj;) adnd |¢§> for V3
and V, respectively withy =1,...,8,8=1, ..., 4.
The basis forV; is given by
-1 1 1
|05(q)) = [ + 2], * (¢ 2“"13) @ le) + g2 /[ + 11,12) ® |d))
! 1
|07(q)) = [o + 2], (¢ 2“*P13) ® Ib) + g7 /[o + 1]11) ® |d))
|25(q)) =12) ® ¢)
—1\—1%, 1 1
|5(@)) = (¢ +9 H72(g 212 ®1b) +¢2|1) @ |c))

|03(q)) = [o + 1];%(q_% 13) ® la) + q2/[e],12) @ 1b))
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103(9)) = 1) ® |b)
1D3(9)) = 12) ® |a)
1D1(g) = 1) ® |a)

and the basis fo¥, is given by

|3(9)) = [3) ® |d)

193(g)) = [+ 2]y 2 (72 |2) @ Id) - \/m|3> ® Ic))
193(g)) = [o + 2], (7211 @ d) — g}/ + 11,13) @ 1b)
192g)) = [o + 2], (2D @ |c) — qé<1‘“>|2> ® |b)

+ qy/[al413) ® la))

So we may express

wherey =1, ...,

whereg =1, ...,

= 10} (g HNHPL(9)]
Y
8 and

= > |95 M) (P5(q)]
B

4 and also note the rules
(Ix) ® [yN' = (=DM (x| @ (y|
(a®@b)(c®d) = (=D ac @ bd).

We find P; to be given by

Pi=en® (eaa + epp + ece(D + F) + ot 1y )

where

e +2],°

+1
+e2 ® (eaa +ecc + ebb(D + F) + [ ]q >

[o+2],°

+e33 ® ( (ebb + ecc) + Gzeaa>

1
[a + Z]q
+e12® ep(—qD + g F) + 21 ® epe(—qg D + g F)

[(X + 1]qq_%_1 —a-1
+e13® T w2, e+ GDqg 7 e
q
/ o + 1 %4—1 B
+331®< [[Ol—i-];]q ed_GDq erleac)
q
vV [o + 1]qq7%71 —a=3
— 3. — GDq 7 ey,
+e23® ( [+ 21, ed q 2 ep
o + 1 %+1 a+
+e32® ([[a-i—];]qeai + Gquaeab)
q

= (1+q 72+ @+ % Mol H T A+ ¢+ (g + % ol
=(1+¢)2(1+q 7))

8057

®)

(6)
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and P, to be given by

[a + 2], P2 = €11 ® (ece + €aq) + €22 ® (epy + €qa)
+es3 ® ([a]yean + [ + 1], (e + ece) + [o + 2] eqq)
—gqe12® ey — q e ® ey
+e13® (g2 /o + year — 61%3\/@%1)
+en ® (—¢ e+ e +q 7 [@lgar)
+eas ® (q2 1 la + Uyeae + 4% ol ena)
—e2® (@ o+ Ugecs + 4 7 Jadea).

We write
Tp(x) =Lr(x)Ly_1(x)...L1(x)
[TL(x)ab]al,ﬁl,...,wL,ﬂL =1 (X)O‘L,BL'.'Ll(_x)gzlfl(_1)2%:2([“]]""[/3/])Zii;lléui'

acy,

We call T'(x) the monodromy matrix and by construction it fulfills the same intertwining
relation as the. operators.

The transfer matrix of the integrable model is given as the supertrace of the monodromy
matrix. This operator is given by

(x) =stT ()] = Y (=HIT (x);i.

1

The 7(x) form a one-parameter family of commuting operators. The transfer matrix may
be taken as integrals of the motion and we can obtain an infinite humber of conservation
laws of the model. It can be employed to construct exactly solvable models in the usual
way.

4. Algebraic Bethe ansatz withBBF' grading

We use the matrix from the vector representation asRyumatrix and thel. operator given
above for obtaining the defining equations for the algebra constructed(#pniRepresent
the monodromy matrix in the following way

Tp(x) = Lp(x)Lp1(x)...L1(x)
Tii(x) Tio(x) Tiz(x)
= | Tou(x) Toa(x) Taz(x) |. (7)
Tza1(x) Tso(x) Tz3(x)

The transfer matrix is given by

T(y) = str[T. (»)] = T11(y) + To2(y) — T33(Y).

Take the lowest weight state as a reference state (pseudo-vacuui) wwhich we
denote ag0),; that is,|0), = |d). Then the action of,(x) on the reference state on the
kth site is

Ix) O 0
L(x)|0)x = 0 I(x) O |I[O).
* Kk 1
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*x and=x* represent complicated values that are not necessary to evaluate and

(xg™* =1
"7 gt g
We find the action of the monodromy matrix on the reference state to be given by
IxX)E 0 0
T.(x)[0) = ( 0 I(x)* 0 ) 10). (8)
T31(x) Taa(x) 1

We construct a set of eigenstates of the transfer matrix using the technique of the NABA.
The creation operators afi@;(x), T32(x) due to the choice of reference state. Thus we use
the following for the ansatz for the eigenstatesr6y):

X1, oo, Xn | F) = T34y (X1) T30, (X2)... T34, (x,)|0) F- 9

where indicesy;; have values 1 or 2 anfi“~“* is a function of the spectral parametess
The action of these states is determined by the monodromy matrix and the rel@jons
which in essence determine the quantum Yangigi/(2|1)] [15]. The relations necessary
for the construction of the NABA are

1
T33(y) T34 (x) = TEQ)y )T3a(x)T33(y)+x/yE( ;y; T3, (y)T33(x) (10)
Ty () Tao () = %Tgp ()Tt () + Eg ;x; Ty L) (A1)
T34, (x1) T30, (X2) = Fayby,arby (X1/%2) T3p, (X2) T3p, (X1) (12)
where
A(y) O 0 0
_ 0 E CW» 0
M= 0y EG) 0
0 0 0 A(y)

Since [1]= [2] = 0, this R-matrix is essentially not graded and it can be seen ithat

also fulfills a Yang—Baxter equation and can be identified withRhmatrix of the quantum
spin% Heisenberg (XXZ) model. The diagonal elements of the monodromy matrix act on
the states in the following way:

n

1
T3s(y)|x1, ooy X | F) = (=1)" H [ Gy Pl

+ D (RS Ta, () 1‘[ T3, (x;)]0) F - (13)
k=1 j=1,j#k
1
[T11(y) + To2]Ix1s oy X4 | F) = I(y)Ll_[ (y/x L HTgb,(x,)|O) D (y)lr-bn pin-
J
+Z<Ak>al DTy () [ Ta, )10 F (14)

J=1,j#k
wherel (y) is defined above and

TP ()b = str[T, P ()] (15)
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that is
eyt = st [LO /00 LY 0/x-2) LS (v/32) L (/x0)].
We have
[Ll(cl)(x)]ij = Zf’ik,ﬂekl-
(16)

So the operatord ™ andr(y) can be interpreted as the operator andR-matrix of the
XXZ model. HenceT Y (y) andtP(y) are the monodromy and transfer matrices for the
corresponding model with inhomogeneitiesi = 1, ..., n. The eigenvalue condition

t(y)'-xlv "'vxn|F) = I‘L(y7 {-xj}v F)|)Cl, "'7xn|F>

leads to the requirement thatbe an eigenvector of the nested transfer matfix(y), and
that the unwanted termsy;, A; cancel. That is,

[(Ak)bl...b,, _ (Z\k)bl...b,,]Fa,,...al — 0.

ajp...dy a...dy

These values are computed in appendix A. This leads us to the conditions on the spectral
parameters; and coefficients”, necessary for eigenvalue condition to hold. This equation
simplifies to

- = EQa/xi) O
T o) L(—l)” ——F7 = (x )al','a"Fan...al
(7 (x0)] izl;[#k E(xi/x0) IS Vi

The next step in the NABA is to solve the nesting. The condition thiie an eigenvector
of ™M (y) requires the diagonalization af¥ (y), which can be acheived by performing a
second, nested Bethe ansatz. We write the monodromy and transfer matrices as follows,

7 ) szl)(y)} 18
() T () (18)

tP) =17 ) + T )
Obtaining, as before, the equations from the relat@®nnecessary for the NABA we have

TP (y) = [

A(y/x) C(y/x)
MO @) = 7 T OT'0) = p ST 0T @) (19)
A(x/y) C(x/y)
o w = 2 g0 - T i (@
T3P 0T (30) = TP O TS (). (21)
For the reference states, choose
0 = [ ) } 0 = &{_1/0)".

The action of the nested monodromy matfi¥’ (y) on the reference state is

Y mIO® =] E (/x) 10
j=1

T MIO® = TTA (v/x) 10®. (22)
j=1
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We choose the following ansatz for the eigenstates'Bfy):

1 1 1 1 1, (1 1
s ) = T3 ) T )10

.y ”1

These states can be related to the coefficiétfts“ by noting that the stat{ac(l) x;}))
exists on a lattice ot sites and is thus an element of a direct product ev@ro-dimensional
Hilbert spaces. The action afY(y) on the states is computed as before from the relations
(2). We obtain

1 1 = A( (1)/)7) 1
T s =[5 [T4 (/) 22
i=1 E( /y) j=

+Z<Ak><”T;i’(y> ]‘[ 737 (x)|0)® (23)

Jj=1,j#k

1
IO D, = A<y & )) - @ @
()’)| . xnl> l_[E(/(l)l_[E y/.xj |.x n1>
i=1 y/x )

+ Z(A W10 [ 18600, (24)
j=1,j#k
The eigenvalues fot P (y) are found to be

1
D), . x D) =

> ny

n A (xP/y) o
(1)
+ 11_! E( (1)/);) HA (v/x;) | x lx7”,. .,x,?). (25)

Inserting this into equationl?) for y = x;, we have the first of the Bethe equations

n ) n A gl) n
D™ T E(x"/x’)=]"[<x/xk) [T AG/x)

j=1, j#k E (xj/xk) -1 E ( ( )/xk) i=1,i#k
k=1,..,n. (26)

To ensure that we have the eigenstates of the transfer matrix for the nesting we must have

the unwanted terms&k(l), A,(cl) cancelling and these values are computed in the appendix.
The resulting equations after some simplification is the set of Bethe equations for the nesting
as follows:

n (1>/x<l> " m A (1>/x(1) i
! 11_’[*" EE 1>/x(1>§ UE( )= H E (1>/x(l); ]HA( 5P /x;)

k=1, .. n 27)

n andn; can be identified as the total number of electra¥g) @nd the number of spin-down
electrons §V,) respectively. With some substitution and simplification the Bethe equations
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reduce to the following

[ ) ]Lz o xk_ijl)qZ

(quH—l - q_l) j=1,j#k q(Xk — xj(l))
k=1,.. N, (28)
N, (1) @ 2 N @, 2
+x Xi—X
e =TS k=1 (29)
Jj=1j#k Xg )C q i=1 C](X, _xk )
The eigenvalues of the transfer matrix are given by
(xg™ =1 b y = q (1)
w(y, {x;}, F) = [ »
! (xq*tt—g™H ] Jiaqx; —p"
Ne 2
i=1 q(-xi - )’)
Ny D 2 N,
X7 —yq (x- —y)q
wPo=]]= @ L
i=1 ( - )’) j=1 - 'qu
Ny (1) 2 N, w2
]‘[ [12—2 (31)

q(y—x<l>), 1Y —Xiq°

5. Conclusion

This model has been solved previously in [13] with the use of the co-ordinate Bethe ansatz.
The solution presented in [13] (see equations 6) is the same as the solution obtained above
(28, 29) withx = ¢'“, ¢ = ¢/? and the following substitutions:

L .
= S(a+d) a:—izd(a+1)

Ay = izl(cj(»l) + 2d) y =id.
Similarly the equations (71, 72) in [2] may be obtained with the substitutions:
we=ila+d) v =i +2d)
1
y =—d b:—(oc~|—é).
Substitutingx = ¢ and taking the limit; — 1 in the BAE, we can easily obtain the

BAE for the g/(2|1) model in [9]. The quantum version of this solution on the open chain
will be presented in a future publication.
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Appendix

Here we calculate the unwanted terms following the method set out in [6]. The unwanted
terms are identified by containing a creation operator with spectral parametérhe
cancellation of the unwanted terms ensures that the st@tese eigenstates of the transfer
matrix t(y). To determineA, it is convenient to commute the first creation operator with
spectral parametex; to the first place in the ansatz using the commutation rule extracted
from the relations arising fron@2). That is, we write

HTga (x;) = Tabkm)]_[Tgb (xi) H Taa, () S (i)
j=k+1

by.b i Cr-16k— cob
S =71 (X 1/xk)ai o T G2/ Xi) g o el (61 /Xk) g - (A1)

To obtain an unwanted term, we commuig pastTs, (x;) using the second term in
(10) then we use the first term to commufes(x;) with the other terms in the ansatz until
it acts on the vacuum according (8). The resulting equation fon; is

[ka (Xk/)’)] _qy-t d 1
VE (xi/y) it i E (/%)
For A, we have two terms involved. So we write, = A1 + As2; these terms

arise fromTy1(y) and Txo(y) respectively. With similar working to that fok, we find the
contribution from theTy1(y) terms to be

C(y/m] LT 1
——— | &p,.16 1 _
[E(y/xk) nibaaal @0 1 E (xi/x;)

Jj=1j#k
b
xr (/X)) Qo /x2) R ot (i /xe-) G

Akal "= S(xx )b1 b pbn .- biraay..ar

ai...dg

Ak lFbl "= S(xg )61 Ck Fln--a1

ap...dg

b b
X1 (X /%) g g T (/X2 g T G /) (A.2)

The delta functions appearing in this equation arise in the following way. Commuting
T11(x) past the terms of the ansatz to the vacuum leads us to thedierm. 8,1 is
necessary as iil4) we need identify thels,, (y) term with theTi1(y) contributions. The
contribution from theT,(y) are obtained similarly with the factod, », 8,4, ,.» being the
only difference betweem; 1 and A 2. Then withA, = Ag1 + Ax2 We have

C(y/xx) - 1
A, Forbn — g Lok fran.-a1 |:] 1 L o N
k (X )a) E(y/x0) (xk) j:ll ]Lk E(xi/x;)

b b
Xr (X /X0 r (X /x2) P o (e fXk—) g g

b b
X1 (kX ) g g T kX 2) g el (X1 /X)) b (A.3)

We may simplify this equation by contracting the..c, indices using the unitarity of the
r-matrix . That is,

r(x/x2)r’ (a/x1) =1
or in component form

r (x1/x2))5 r (x2/ X)) = 8ayerd

As a result the following terms in (A.2) may be simplified

ajc19azcy -

C1...C; bicy br_1ck1
SO r (e /x)gtet o G /xi-1)g gt = | | SardiSivac-



8064 K E Hibberd et al

The remaining--matrices we convert intd. operators according to
LDy = r(ijien-

The unwanted terms are written as

1 1
A Fbb — [C(y/xk)i| o)t l—[ Fan-aibi 1.y
E(y/xk) itk E Ok /Xi)

1 (1) n—1by— (€] b,
XL,(l)(xk/xn) e L1 Qo /Xn—1) g g Ly (kX )g (A.4)

We now insert the equations fok, and A, into the equation for the cancellation
of unwanted terms and multiply throughout 5Y~Y(x;). We note once again using the
unitarity of r(y) that we have

k
1 P1---p by...b
SV ) S () a;—]"[aa,,p,..
The result after some simplification is

n
I(xk)(’L)(—l)” l—[ E(Xk/xi) an~~~bk+1pk~~~Pl — [.[(l) (xk)F]b,,...bk+1pk...p1.

Working in a similar manner to the above for the computation of the unwanted terms
for the nested case leads to the equations

x,ﬁl)C (x,il)/y) n A (xgl)/xlil)) n
AD A (xu)/x)
k ) NONOY ko
YE (x,7/y) j=1j# E [x7) i=1

(A.5)

A1(<1> _ ( /x(l)) ﬁ ( 1)/x(1)> ﬁE( 1)/xi)- (A.6)

(}’/Xk ) Jj=1.j#k E( (1)/X(1)> i=

The cancellation ofA(” and A" leads to the equation

) ey = B AT By
— V1 E&T/x)=]| | ———= X, /xp
j=1j#s E (xs(l)/x;l)> i=1 ’ i=1 E( (l)/ (l)> =1 3

s=1 .. n;. (A.7)
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